Jump to content

Organic electrochemical transistor

From Wikipedia, the free encyclopedia

The organic electrochemical transistor (OECT) is an organic electronic device which functions like a transistor. The current flowing through the device is controlled by the exchange of ions between an electrolyte and the OECT channel composed of an organic conductor or semiconductor.[1] The exchange of ions is driven by a voltage applied to the gate electrode which is in ionic contact with the channel through the electrolyte. The migration of ions between the channel and the electrolyte is accompanied by electrochemical redox reactions occurring in the channel material. The electrochemical redox of the channel along with ion migration changes the conductivity of the channel in a process called electrochemical doping. OECTs are being explored for applications in biosensors, bioelectronics and large-area, low-cost electronics. OECTs can also be used as multi-bit memory devices that mimic the synaptic functionalities of the brain. For this reason, OECTs can be also being investigated as elements in neuromorphic computing applications.

OECT device construction and operating mechanism

[edit]

OECTs consist of a semiconductor or even conductor thin-film (the channel), usually made of a conjugated polymer, which is in direct contact with an electrolyte.[2] Source and drain electrodes establish electrical contact to the channel, while a gate electrode establishes electrical contact to the electrolyte. The electrolyte can be liquid, gel, or solid. In the most common biasing configuration, the source is grounded and a voltage (drain voltage) is applied to the drain. This causes a current to flow (drain current), due to electronic charge (usually holes) present in the channel. When a voltage is applied to the gate, ions from the electrolyte are injected in the channel and change the electronic charge density, and hence the drain current. When the gate voltage is removed, the injected ions return to the electrolyte and the drain current goes back to its original value. However, some channel materials can hold the migrated ions even after removing the gate voltage enabling their use as memory devices.

OECTs commonly use PEDOT:PSS as the channel material, and work in the depletion mode.[3] The organic semiconductor PEDOT is doped p-type by the sulfonate anions of present in PSS[4] and hence PEDOT:PSS exhibits a high electronic conductivity. When no gate voltage is applied, a high drain current flows through the highly conductive channel, and the OECT is said to be in the ON state. When a positive voltage is applied to the gate, cations from the electrolyte are injected into the PEDOT:PSS channel, where they compensate the negative charge on the sulfonate anions. This leads to electrochemical reduction of PEDOT from its oxidised state to its neutral state resulting in de-doping of the OECT channel. The OECT is then said to be in the OFF state.[1] Accumulation mode OECTs, based on intrinsic organic semiconductors (for example p(g2T-TT)), have also been described.[5][6]

OECTs are different from electrolyte-gated field-effect transistors. In the latter type of device, ions do not penetrate into the channel, but rather accumulate near its surface (or near the surface of a dielectric layer, when such a layer is deposited on the channel).[7] This induces accumulation of electronic charge inside the channel, near the surface. In contrast, in OECTs, ions are injected into the channel and change the electronic charge density throughout its entire volume. As a result of this bulk coupling between ionic and electronic charge, OECTs show a very high transconductance[8] along with an outstanding intrinsic gain.[9] The disadvantage of OECTs is that they are slow, as they are limited by the inherently slow migration of ions into and out of the channel. However, micro-fabricated OECTs show response times of the order of hundreds of microseconds.[10] Accurate simulation of OECTs is possible using the drift-diffusion model.[11]

OECTs were first developed in the 80’s by the group of Mark Wrighton.[12] They are currently the focus of intense development for applications in bioelectronics,[13] and in large-area, low-cost electronics.[14] Advantages such as straightforward fabrication and miniaturization, compatibility with low-cost printing techniques,[15][16] compatibility with a wide range of mechanical supports (including fibers,[17] paper,[18] plastic[19] and elastomer[20]), and stability in aqueous environments, led to their use in a variety of applications in biosensors.[21][22] Moreover, their high transconductance makes OECTs powerful amplifying transducers.[23] OECTs have been used to detect ions,[24][25] neurotransmitters,[9] metabolites,[26][27] DNA,[28] pathogenic organisms,[29] as well as to probe cell adhesion,[30] measure the integrity of barrier tissue,[31] detect epileptic activity in rats,[32] and interface with electrically active cells and tissues.[33][34][35]

[edit]

References

[edit]
  1. ^ a b Bernards, D. A.; Malliaras, G. G. (2007-10-16). "Steady-State and Transient Behavior of Organic Electrochemical Transistors". Advanced Functional Materials. 17 (17). Wiley: 3538–3544. doi:10.1002/adfm.200601239. ISSN 1616-301X. S2CID 97447440.
  2. ^ Zeglio, Erica; Inganäs, Olle (2018). "Active Materials for Organic Electrochemical Transistors". Advanced Materials. 30 (44): 1800941. Bibcode:2018AdM....3000941Z. doi:10.1002/adma.201800941. ISSN 1521-4095. PMID 30022545. S2CID 51699034.
  3. ^ Owens, Róisín M.; Malliaras, George G. (2010). "Organic Electronics at the Interface with Biology". MRS Bulletin. 35 (6). Cambridge University Press (CUP): 449–456. doi:10.1557/mrs2010.583. ISSN 0883-7694.
  4. ^ A. Elschner, S. Kirchmeyer, W. Lövenich, U. Merker and K. Reuter, in PEDOT, Principles and Applications of an Intrinsically Conductive Polymer (CRC Press, 2010), pp. 113-166.
  5. ^ Cho, Jeong Ho; Lee, Jiyoul; Xia, Yu; Kim, BongSoo; He, Yiyong; Renn, Michael J.; Lodge, Timothy P.; Daniel Frisbie, C. (2008-10-19). "Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic". Nature Materials. 7 (11). Springer Nature: 900–906. Bibcode:2008NatMa...7..900C. doi:10.1038/nmat2291. ISSN 1476-1122. PMID 18931674.
  6. ^ Inal, Sahika; Rivnay, Jonathan; Leleux, Pierre; Ferro, Marc; Ramuz, Marc; Brendel, Johannes C.; Schmidt, Martina M.; Thelakkat, Mukundan; Malliaras, George G. (2014-10-13). "A High Transconductance Accumulation Mode Electrochemical Transistor". Advanced Materials. 26 (44). Wiley: 7450–7455. Bibcode:2014AdM....26.7450I. doi:10.1002/adma.201403150. ISSN 0935-9648. PMID 25312252. S2CID 205257151.
  7. ^ Kim, Se Hyun; Hong, Kihyon; Xie, Wei; Lee, Keun Hyung; Zhang, Sipei; Lodge, Timothy P.; Frisbie, C. Daniel (2012-12-02). "Electrolyte-Gated Transistors for Organic and Printed Electronics". Advanced Materials. 25 (13). Wiley: 1822–1846. doi:10.1002/adma.201202790. ISSN 0935-9648. PMID 23203564. S2CID 205247030.
  8. ^ Khodagholy, Dion; Rivnay, Jonathan; Sessolo, Michele; Gurfinkel, Moshe; Leleux, Pierre; et al. (2013-07-12). "High transconductance organic electrochemical transistors". Nature Communications. 4 (1). Springer Science and Business Media LLC: 2133. Bibcode:2013NatCo...4.2133K. doi:10.1038/ncomms3133. ISSN 2041-1723. PMC 3717497. PMID 23851620.
  9. ^ a b Ferro, Letícia M. M.; Merces, Leandro; de Camargo, Davi H. S.; Bof Bufon, Carlos C. (2021-07-22). "Ultrahigh-Gain Organic Electrochemical Transistor Chemosensors Based on Self-Curled Nanomembranes". Advanced Materials. 33 (29). Wiley: 2101518. Bibcode:2021AdM....3301518F. doi:10.1002/adma.202101518. ISSN 0935-9648. PMID 34061409. S2CID 235269557.
  10. ^ Khodagholy, Dion; Gurfinkel, Moshe; Stavrinidou, Eleni; Leleux, Pierre; Herve, Thierry; Sanaur, Sébastien; Malliaras, George G. (2011-10-17). "High speed and high density organic electrochemical transistor arrays". Applied Physics Letters. 99 (16). AIP Publishing: 163304. Bibcode:2011ApPhL..99p3304K. doi:10.1063/1.3652912. ISSN 0003-6951.
  11. ^ Szymanski, Marek; Tu, Deyu; Forchheimer, Robert (2017). "2-D Drift-Diffusion Simulation of Organic Electrochemical Transistors". IEEE Transactions on Electron Devices. 64 (12): 5114–5120. Bibcode:2017ITED...64.5114S. doi:10.1109/TED.2017.2757766. S2CID 28231599.
  12. ^ White, Henry S.; Kittlesen, Gregg P.; Wrighton, Mark S. (1984). "Chemical derivatization of an array of three gold microelectrodes with polypyrrole: fabrication of a molecule-based transistor". Journal of the American Chemical Society. 106 (18). American Chemical Society (ACS): 5375–5377. doi:10.1021/ja00330a070. ISSN 0002-7863.
  13. ^ Strakosas, Xenofon; Bongo, Manuelle; Owens, Róisín M. (2015-01-07). "The organic electrochemical transistor for biological applications". Journal of Applied Polymer Science. 132 (15). Wiley: 41735. doi:10.1002/app.41735. ISSN 0021-8995.
  14. ^ Nilsson, D.; Robinson, N.; Berggren, M.; Forchheimer, R. (2005-02-10). "Electrochemical Logic Circuits". Advanced Materials. 17 (3). Wiley: 353–358. Bibcode:2005AdM....17..353N. doi:10.1002/adma.200401273. ISSN 0935-9648. S2CID 135787001.
  15. ^ D. Nilsson, M. X. Chen, T. Kugler, T. Remonen, M. Armgarth and M. Berggren, Adv. Mater. 14, 51 (2002).
  16. ^ Basiricò, L.; Cosseddu, P.; Scidà, A.; Fraboni, B.; Malliaras, G.G.; Bonfiglio, A. (2012). "Electrical characteristics of ink-jet printed, all-polymer electrochemical transistors". Organic Electronics. 13 (2). Elsevier BV: 244–248. doi:10.1016/j.orgel.2011.11.010. ISSN 1566-1199.
  17. ^ Hamedi, Mahiar; Forchheimer, Robert; Inganäs, Olle (2007-04-04). "Towards woven logic from organic electronic fibres". Nature Materials. 6 (5). Springer Nature: 357–362. Bibcode:2007NatMa...6..357H. doi:10.1038/nmat1884. ISSN 1476-1122. PMID 17406663.
  18. ^ Nilsson, D (2002-09-20). "An all-organic sensor–transistor based on a novel electrochemical transducer concept printed electrochemical sensors on paper". Sensors and Actuators B: Chemical. 86 (2–3). Elsevier BV: 193–197. doi:10.1016/s0925-4005(02)00170-3. ISSN 0925-4005.
  19. ^ Zhang, Shiming; Hubis, Elizabeth; Girard, Camille; Kumar, Prajwal; DeFranco, John; Cicoira, Fabio (2016). "Water stability and orthogonal patterning of flexible micro-electrochemical transistors on plastic". Journal of Materials Chemistry C. 4 (7). Royal Society of Chemistry (RSC): 1382–1385. doi:10.1039/c5tc03664j. ISSN 2050-7526.
  20. ^ Zhang, Shiming; Hubis, Elizabeth; Tomasello, Gaia; Soliveri, Guido; Kumar, Prajwal; Cicoira, Fabio (2017-03-08). "Patterning of Stretchable Organic Electrochemical Transistors". Chemistry of Materials. 29 (7). American Chemical Society (ACS): 3126–3132. doi:10.1021/acs.chemmater.7b00181. ISSN 0897-4756.
  21. ^ Zhang, Shiming; Cicoira, Fabio (2018). "Flexible self-powered biosensors". Nature. 561 (7724). Springer Science and Business Media LLC: 466–467. Bibcode:2018Natur.561..466Z. doi:10.1038/d41586-018-06788-1. ISSN 0028-0836. PMID 30258144. S2CID 52844636.
  22. ^ Lin, Peng; Yan, Feng (2011-11-21). "Organic Thin-Film Transistors for Chemical and Biological Sensing". Advanced Materials. 24 (1). Wiley: 34–51. doi:10.1002/adma.201103334. hdl:10397/11453. ISSN 0935-9648. PMID 22102447. S2CID 205242523.
  23. ^ Rivnay, Jonathan; Leleux, Pierre; Sessolo, Michele; Khodagholy, Dion; Hervé, Thierry; Fiocchi, Michel; Malliaras, George G. (2013-10-02). "Organic Electrochemical Transistors with Maximum Transconductance at Zero Gate Bias". Advanced Materials. 25 (48). Wiley: 7010–7014. Bibcode:2013AdM....25.7010R. doi:10.1002/adma.201303080. ISSN 0935-9648. PMID 24123258. S2CID 205251741.
  24. ^ Svensson, Per-Olof; Nilsson, David; Forchheimer, Robert; Berggren, Magnus (2008-11-17). "A sensor circuit using reference-based conductance switching in organic electrochemical transistors". Applied Physics Letters. 93 (20). AIP Publishing: 203301. Bibcode:2008ApPhL..93t3301S. doi:10.1063/1.2975377. ISSN 0003-6951.
  25. ^ Sessolo, Michele; Rivnay, Jonathan; Bandiello, Enrico; Malliaras, George G.; Bolink, Henk J. (2014-05-23). "Ion-Selective Organic Electrochemical Transistors". Advanced Materials. 26 (28). Wiley: 4803–4807. Bibcode:2014AdM....26.4803S. doi:10.1002/adma.201400731. ISSN 0935-9648. PMID 24862110. S2CID 205255158.
  26. ^ Zhu, Zheng-Tao; Mabeck, Jeffrey T.; Zhu, Changcheng; Cady, Nathaniel C.; Batt, Carl A.; Malliaras, George G. (2004). "A simple poly(3,4-ethylene dioxythiophene)/poly(styrene sulfonic acid) transistor for glucose sensing at neutral pH". Chemical Communications (13). Royal Society of Chemistry (RSC): 1556–1557. doi:10.1039/b403327m. ISSN 1359-7345. PMID 15216378.
  27. ^ Tang, Hao; Yan, Feng; Lin, Peng; Xu, Jianbin; Chan, Helen L. W. (2011-04-26). "Highly Sensitive Glucose Biosensors Based on Organic Electrochemical Transistors Using Platinum Gate Electrodes Modified with Enzyme and Nanomaterials". Advanced Functional Materials. 21 (12). Wiley: 2264–2272. doi:10.1002/adfm.201002117. hdl:10397/33050. ISSN 1616-301X. S2CID 98742240.
  28. ^ Lin, Peng; Luo, Xiaoteng; Hsing, I-Ming; Yan, Feng (2011-07-27). "Organic Electrochemical Transistors Integrated in Flexible Microfluidic Systems and Used for Label-Free DNA Sensing". Advanced Materials. 23 (35). Wiley: 4035–4040. Bibcode:2011AdM....23.4035L. doi:10.1002/adma.201102017. hdl:10397/11943. ISSN 0935-9648. PMID 21793055. S2CID 205241505.
  29. ^ He, Rong-Xiang; Zhang, Meng; Tan, Fei; Leung, Polly H. M.; Zhao, Xing-Zhong; Chan, Helen L. W.; Yang, Mo; Yan, Feng (2012). "Detection of bacteria with organic electrochemical transistors". Journal of Materials Chemistry. 22 (41). Royal Society of Chemistry (RSC): 22072. doi:10.1039/c2jm33667g. hdl:10397/12945. ISSN 0959-9428.
  30. ^ Lin, Peng; Yan, Feng; Yu, Jinjiang; Chan, Helen L. W.; Yang, Mo (2010-08-20). "The Application of Organic Electrochemical Transistors in Cell-Based Biosensors". Advanced Materials. 22 (33). Wiley: 3655–3660. Bibcode:2010AdM....22.3655L. doi:10.1002/adma.201000971. hdl:10397/15450. ISSN 0935-9648. PMID 20661950. S2CID 39442648.
  31. ^ Jimison, Leslie H; Tria, Scherrine A.; Khodagholy, Dion; Gurfinkel, Moshe; Lanzarini, Erica; Hama, Adel; Malliaras, George G.; Owens, Róisín M. (2012-09-05). "Measurement of Barrier Tissue Integrity with an Organic Electrochemical Transistor". Advanced Materials. 24 (44). Wiley: 5919–5923. Bibcode:2012AdM....24.5919J. doi:10.1002/adma.201202612. ISSN 0935-9648. PMID 22949380. S2CID 22510220.
  32. ^ Khodagholy, Dion; Rivnay, Jonathan; Sessolo, Michele; Gurfinkel, Moshe; Leleux, Pierre; Jimison, Leslie H.; Stavrinidou, Eleni; Herve, Thierry; Sanaur, Sébastien; Owens, Róisín M.; Malliaras, George G. (2013-07-12). "High transconductance organic electrochemical transistors". Nature Communications. 4 (1). Springer Science and Business Media LLC: 1575. Bibcode:2013NatCo...4.2133K. doi:10.1038/ncomms3133. ISSN 2041-1723. PMC 3717497. PMID 23851620.
  33. ^ Campana, Alessandra; Cramer, Tobias; Simon, Daniel T.; Berggren, Magnus; Biscarini, Fabio (2014). "Organic Electrochemical Transistors: Electrocardiographic Recording with Conformable Organic Electrochemical Transistor Fabricated on Resorbable Bioscaffold". Advanced Materials. 26 (23). Wiley: 3873. doi:10.1002/adma.201470165. ISSN 0935-9648.
  34. ^ Leleux, Pierre; Rivnay, Jonathan; Lonjaret, Thomas; Badier, Jean-Michel; Bénar, Christian; Hervé, Thierry; Chauvel, Patrick; Malliaras, George G. (2014-09-29). "Organic Electrochemical Transistors for Clinical Applications". Advanced Healthcare Materials. 4 (1). Wiley: 142–147. doi:10.1002/adhm.201400356. ISSN 2192-2640. PMID 25262967. S2CID 32442448.
  35. ^ Yao, Chunlei; Li, Qianqian; Guo, Jing; Yan, Feng; Hsing, I-Ming (2014-10-31). "Rigid and Flexible Organic Electrochemical Transistor Arrays for Monitoring Action Potentials from Electrogenic Cells". Advanced Healthcare Materials. 4 (4). Wiley: 528–533. doi:10.1002/adhm.201400406. ISSN 2192-2640. PMID 25358525. S2CID 28927047.